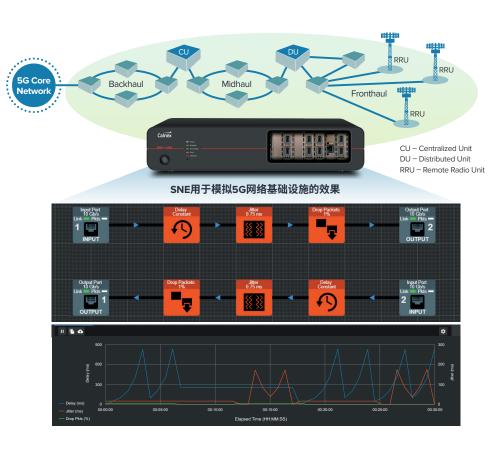


支持从1GbE到100GbE的各速率接口

关键亮点

- 支持100GbE, 50GbE, 25GbE, 10GbE. 1GbE 接口
- · 基于网页端的用户界面 (Web UI)
- RESTful API 可支持您在自动化的 环境中轻松进行远程控制
- 多用户
- 多端口—一流的端口密度,最多可达8个100GbE/50GbE/25GbE、16个10GbE/1GbE以太网端口
- · 时间轴功能,可通过 WebUI 轻松 实现自动化
- 无限制地进行任意端口到任意 端口互连
- 可配置高达30秒的时延模拟
- 超过55种损伤和工具
- 音频和视频MPEG (H.264 & H.265) 修改和损坏
- 包碎片化和重新排序
- 对数据报文的检查和过滤
- 包修改,修改任意包中的任意位 或字节
- 负载流量
- 非易失性的报文捕获和重放
- 链路震荡
- 马尔可夫随机丢包
- · 应用于视频测试的最高20Mbyte 可配缓存的带宽限速
- 自动化的5G网络模型
- 个性化用户注释功能


使用Calnex SNE网络仿真仪,在您的实验室中模拟 真实网络条件开展测试

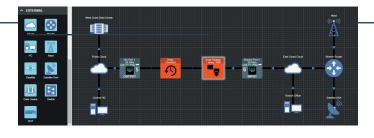
真实的网络是一个复杂的系统,其中包含各种不断变化的条件、灵活的路由和各类应用。想获得可预测的基础设施性能,唯一的办法就是在部署前进行测试。

Calnex SNE 提供业界领先的灵活性,让您在对这些复杂的真实系统进行搭建和建模的过程中,模拟各种网络,并仿真出应用和平台执行任务时所需的真实条件。

使用真实的5G传输网络模型进行自动化测试

5G网络将被用来支持许多新应用,这些应用需要在真实的测试条件下进行测试。 SNE具有5G数据集,其模型来自于主要运营商收集的真实数据,从而可使用常见的 真实的5G条件,快速和准确地测试应用。

简单易用的网页端用户界面(Web UI)


Calnex SNE 现有网页端用户界面 (Web UI)。您可以通过电脑或平板上的网页浏览器方便地控制网络仿真仪。您不需要将单独的客户端GUI下载到您的电脑上,当然您也不再需要担心电脑上的客户端GUI是否与网络仿真仪上的软件兼容。

SNE的Web UI采用与之前客户端GUI相同的用于构建网络仿真的"地图"式图形设计。因此,如果您知道如何使用以前的Calnex SNE用户界面,那么您就知道如何使用新的Web UI。如果您之前从未使用过Calnex SNE,那么您仍然会发现Web UI 非常易于使用。SNE Web UI为您提供了一种构建网络仿真的独特视觉图形方式。您可以按照所需顺序将各类损伤组件链接在一起完整控制,对通过的流量报文进行网络损伤模拟。灵活的Web UI使您能够从丰富的损伤列表中选取您需要的损伤,并拖放到网络"地图"中,创建特定的网络损伤场景,以满足您的需求。

直观的拖放功能

所有损伤工具都位于侧边栏菜单中。只需将您需要的损伤组件拖到地图区域,即可构建您的测试场景。复制和 粘贴功能支持您轻松地复制地图。

用户注释功能

用户现在可以通过向地图端点添加注释,个性化设置地图。可添加多个注释并命名,代表用户自己的设备或位置。

仪表板视图 — 带有端口 视图和地图摘要功能

让您可以查看和预留端口,以及运行/停止选定的 损伤地图。

端口视图提供有关端口配置、活动端口、数据速率和链路状态的信息,以及有关将哪些端口分配给哪些用户的信息。

地图摘要功能列出用户选择的地图,用户能够在仪表板视图模式运行/停止所选地图。

使用Calnex SNE测试:

- SD-WAN
- 云计算/数据中心迁移
- 广电高质量视频网络 SMPTE
- 音频/视频会议
- 音频/视频应用 (IPTV, VoIP等)
- 移动用户网络 (VoLTE, eMBMS等)
- 内容交付网络
- CoS/QoS级别
- WAN 加速/网络优化
- LAN/WAN 企业网
- ADSL/FTTH
- SLA 验证
- ITU-T Y.1731/IEEE 802.1ag 操作和 维护
- 卫星链路
- 存储网络
- 电信(运营商)网络应用
- 运营商Wi-Fi
- 有线/宽带网络
- 微波
- Wifi 和 Wimax
- RoIP
- GPRS, 3G, 4G和5G
- 拨号
- DSL, ADSL 和 XDSL

极高的灵活性——多端口和多用户

Calnex SNE 是一种高度灵活的网络仿真和网络模拟解决方案。无论您是想仿真点对点链接、模拟具有多个网关的复杂数据中心,还是提取视频系统的分析信息,使用 SNE,您都可以在几秒钟内构建您的网络。

取决于位置、连接性、服务质量、服务数量和在其中使用的应用程序等因素,每个网络和项目的要求都不同,超越简单的延迟、抖动和带宽仿真的测试对于任何企业都是必不可少的。

此外,SNE 提供多用户、多端口环境。可以为每个用户分配一对端口或多个端口供用户专用。这为团队或部门确保了一种非常经济高效且灵活的提供测试资源的方式。

应用

Calnex SNE 是当前应对以太网测试问题的完整解决方案。它结合了全面且高度准确的网络仿真,使您能够:

排除故障

在不中断生产流量的情况下,调查报告的问题并测试解决方案。此外,测试特定场景并获得有关问题出现的时间和地点的洞察力和数据,以便在问题成为实际问题之前确定有效的解决方案。

设计网络

创建假设场景来评估网络变化;在昂贵的实施之前评估不同的拓扑和技术。例如,通过确定不同的 WAN 优化产品在您的网络的最佳/平均/最差条件下的表现来评估 WAN 加速技术。

测试应用程序性能

在部署之前确定您的软件将如何为最终用户在其网络上执行;在需要返工、发布延迟或失败之前排除故障并解决问题。

优化性能

复制网络特性下调整应用程序和软件设置,以优化不同用户组的性能。

模拟真实网络条件

- 繁忙的高峰时段
- 新工口3回転内34
- 远距离抖动
- 数据重复
- 数据碎片化
- 重路由
- 带宽限制

- 数据包损坏
- 数据包乱序
- 网络流量突发
- 部分或全部中断
- 主备切换
- 网络拥塞

关键特点

Calnex SNE具有:

- 多端口 业界领先的端口密度,最高可达8个
 100GbE/50GbE/25GbE、16个10GbE/1GbE端口。
- 灵活配置 可以混合搭配接口卡以满足您的需求。
- 灵活接口 QSFP28、SFP28、SFP+或 RJ-45(或混合)。
- 时间轴功能可通过Web UI轻松实现自动化,无需编写脚本或学习远程控制命令。
- Wireshark 集成。
- 使用 RESTful API 通过远程控制轻松实现自动化。
- 任意端口之间的流数据包,没有限制。
- 10Gbps的线速下高达12分钟的存储。
- 在10GbE接口线速时延迟仿真可达4秒,在1GbE接口线速时延迟仿真可达10秒。
- 友好、易用的图形化设计可在几秒钟内创建网络。

线速

SNE 支持线速性能。所有10GbE端口均为双速率,支持 10GbE和1GbE 操作。所有25GbE端口都是多速率的,支持 25GbE、10GbE 和1GbE 操作。这使得SNE非常灵活,可以根 据您的个人吞吐量需求进行定制。

"任意端口到任意端口"功能

SNE 具有真正的"任意端口到任意端口"功能。无论您使用 4、8 还是16个端口,它们都将无限制地相互通信。

许多仿真产品可能会声明您购买的是"4端口仿真仪",但通常您实际得到的是两个"仿真仪",每个仿真仪在一个盒子中都有两个端口。外部可能有四个端口,但实际情况是您有两个独立的仿真仪,并且无法在每个仿真仪之间发送数据包。所以实际上,您拥有的是两个带有两个端口的仿真仪,而不是您需要的四个端口。

碎片化和重新排序

当数据包跨越网络边界时,它们会变得碎片化。SNE可以将数据包分段以模拟低至68字节的MTU更改。也可以通过将数据包"X"个帧或时间移到未来来重新排序数据包。

负载生成

很少有网络保持安静不动,因为总有一定数量的后台流量。 无论是文件服务器、打印机还是其他产生流量的设备,正确 建模都很重要。SNE 提供了多种生成此流量的方法,包括后 台流量生成(拥塞)、TCP负载生成器、PCAP文件重放等。

视频和音频

专用损伤允许视频 (H.264 和 H.265)、音频流、RTP、RTCP 等智能降级。了解您的 AV 设备在面对视频或音频帧损坏时的稳健程度,并查看有关视频格式内部的分析信息。

损伤组件

SNE提供所有常见的损伤,包括延迟、抖动、带宽限速等。此外,它还提供高级损伤,包括碎片、视频损坏、BER 损坏、重新排序等。

切换和备用线路

建立在我们强大的过滤器之上,您可以轻松地模拟任何网络中的多条路径并在它们之间实时切换(或使用外部触发器)。这让您可以对"好"和"差"的网络分别建模并在它们之间进行实时切换,您可以创建无限数量的路径。

综合设置

不仅有 55 种以上的损伤组件,而且每一种损伤具有广泛的 选项和设置,以独特控制它们的操作,例如缓冲区和突发管 理带宽限制,亦或是仅影响 H.264 中的B-Frames视频流。

过滤

在模拟网络上能够识别并针对特定数据流进行操作非常重要。SNE 提供大量内置过滤器,用于识别和分析损坏的数据包。此外,您可以将过滤器连接在一起以创建更多复杂的过滤器(例如,您只需两个过滤器就可以找到VLAN ID是90且端口为8080的HTTP流量)。

关键特点(接上页)

轻松自动化

我们了解每位用户的自动化环境都不同。SNE可以通过多种方法进行外部控制。RESTful API 提供强大且高效的基于网页的自动化。RESTful API 通过远程控制提供了一个简单的自动化和脚本环境。

RESTful API 提供启动/停止地图、动态更改损伤设置、链路震荡等功能。

SNE还带有一个非常有用且易于使用的时间轴(自动更改)功能,该功能允许用户通过 Web UI 轻松自动化仿真,而无需学习或开发脚本。

III DADIA			产品参数 		
技术规格	1G	10G	25G	50G	100G
物理特性					
网络接口数	最高16	最高16	最高8	最高8	最高8
标准网络接口	GbE Copper	SFP+	SFP28	QSFP28	QSFP28
可选网络接口	RJ45	SFP+	SFP28	QSFP28	QSFP28
每个接口每秒最大包速率(双向)	296万	2960万	3720万	6250万	6250万
尺寸	2U	2U	2U	2U	2U
内部延时	<20µs	<20µs	<20µs	<20µs	<20µs
最大帧长 — Jumbo 模式9219字节; 非Jumbo 模式1542字节	√	✓	√	✓	✓
一般特性					
时间精度	10μs	10µs	10µs	10μs	10µs
任意端口到任意端口 数据包可以在任何端口之间发送 完全的灵活性	√	√	√	√	√
实时修改 — 实时修改任何损伤设置	√	√	√	√	✓
带循环选项的流量捕获和重放 易失性存储 (20G RAM) 非易失性存储 (1TB SSD)* *最大流量捕获速率 1Gb/s	✓ 可选	/ 可选	✓ 可选	/ 可选	✓ 可选
双向独立仿真	√	√	√	✓	√
时间轴 — 无需手动干预即可安排对仿真设置的更改。 选项:用于连续播放的循环时间线	✓	√	✓	√	√
链路震荡	√	✓	√	✓	√
延迟仿真 — 在 25GbE 时可达 4 秒; 10GbE 时可达 4 秒; 1GbE 时可 的带宽下)	丁达 10 秒; 可达	30 秒(所有返	上率都在降低		
IGbE 延迟仿真 — 高达 1.25秒	√	√	√	√	✓
10GbE 延迟仿真 — 高达 0.5秒	N/A	✓	✓	✓	✓
25GbE 延迟仿真 — 高达 0.5秒	N/A	N/A	✓	✓	✓
50GbE 延迟仿真 — 高达 0.339秒	N/A	N/A	N/A	✓	✓
00GbE 延迟仿真 — 高达 0.339秒	N/A	N/A	N/A	N/A	✓
延迟仿真 (降低带宽) — 最多 30秒	✓	✓ —	√	√	√
IGbE 扩展延迟仿真 — 高达 10 秒	可选	可选	可选	可选	可选
10GbE 扩展延迟仿真 — 高达 4秒	N/A	可选	可选	可选	可选
25GbE 扩展延迟仿真 — 高达 4秒	N/A	N/A	可选	可选	可选
50GbE 扩展延迟仿真 — 高达 2.714秒	N/A	N/A	N/A	可选	可选
00GbE 扩展延迟仿真 — 高达 2.714秒	N/A	N/A	N/A	N/A	可选
国定时延	√	√	√	✓	√
可变时延	√	· ·	√	✓	√
价跃	✓	✓	✓	✓	✓
正态/高斯	√	✓	✓	✓	√
正弦	√	✓	✓	✓	✓
抖动 — 0.1ms到100ms, 或者固定时延的0.1到100%	√	✓	✓	✓	✓
时间限制(指定损伤的开始和持续时间) 开始/持续时间 0.01 毫秒到 360,000 毫秒(以 0.01 毫秒为增量)	✓	✓	✓	✓	✓

	产品参数				
技术规格	1G	10G	25G	50G	100G
带宽仿真(用户可配置的视频缓冲区大小高达 20Mbytes)					
恒定带宽限制	128bit/秒 到1G	128bit/秒 到 10G	128bit/秒 到 25G	128bit/秒 到 25G	128bit/秒 到 25G
随机范围(最小到最大,包含时间限制)	128bit/秒 到 1G	128bit/秒 到 10G	128bit/秒 到 25G	128bit/秒 到 25G	128bit/秒 到 25G
随机范围持续时间—1000毫秒到60分钟(以0.1毫秒为单位增量)	√	√	√	√	√
背景流量产生					
固定数据速率 生成广播包 范围(有时间限制的最小值到最大值)	500字节/秒 到 1G	500字节/秒 到10G	500字节/秒 到25G	500字节/秒 到 50G	500字节/秒 到 100G
范围持续时间 1000 毫秒至 360,000毫秒(以1毫秒为增量)	√	✓	✓	✓	√
乱序					
基于时间的重新排序 重排数据包从 0.1毫秒到 500 毫秒	√	✓	✓	✓	✓
位置基础重新排序 最多可置换 10000 个位置的数据包	√	✓	✓	✓	✓
损坏					
位翻转 起止位置(第一个字节至最后一个字节),1至100%	√	√	√	√	√
字节翻转 起止位置(第一个字节至最后一个字节),1至100%	√	✓	✓	√	√
以太网碎片化 MTU: 68 至 9000	√	✓	✓	✓	√
Bit 错误率(每个)模拟 收到的y个bit中的x个bit (1 bit to IE+15)	✓	✓	✓	✓	√
重复					
简单(单次重复) 连接上收到的数据包将被立即重复一次	√	✓	✓	✓	√
定时(每x秒重复一次) 在指定的延迟后进行单次重复(1至10000毫秒)	√	√	√	✓	√
复杂(多次定时重复) 在指定的时间延迟后按指定的次数多次重复(1至1000毫秒)	✓	√	√	✓	✓
丢包					
标准 - 在收到的 y 中丢弃 x 个数据包	✓	✓	✓	✓	✓
百分比 — 丢弃 1% 至100%(以 1% 为增量)	✓	✓	✓	✓	✓
马尔可夫 — 2 阶随机丢包 (根据 ITU-T G.1050 附录 II — Gilbert-Elliott 模型)	√	✓	✓	✓	✓
中断一丢弃在指定链路上收到的所有包	✓	✓	✓	✓	✓
均匀丢弃一数据包将在整个过程中定期丢弃	✓	✓	✓	✓	✓
突发丢包 — 数据包将在连续的组中丢弃	✓	✓	✓	✓	✓
时间限制 — 开始/持续时间 0.01 毫秒到 360,000 毫秒 (在0.01ms 增量)	√	✓	√	✓	✓

√ 标准配置 8

	产品参数
技术规格	所有接口: 1G, 10G, 25G, 50G, 100G
修改	
通用数据包修改 每个数据包最多修改 6 位/字节	✓
分析 (从模拟的任何节点提取分析信息)	
带宽图 显示带宽利用率 — 记录峰值和平均值等, 数据可以导出	✓
数据包速率 显示数据包利用率,数据包之间间隔	✓
RTP分析器 输出有关 RTP 流的详细信息	可选
具有多种负载分布模型的负载生成	
TCP 客户端 用数据流模拟客户端	可选
TCP服务器 用数据流模拟服务器	可选
DDOS 模拟 模拟极其紧张的DDOS环境	可选
音视频包	
RTP过滤器	可选
MPEG H.264 和 H.265 损伤	可选
管理	
拖放用户界面 简单的用户界面,允许用户在屏幕上绘制他们的目标网络, 根据需要拖放损伤组件搭建可视化的被测网络	✓
RESTful API实现自动化	✓
智能启动 开机时自动开启上次搭建的损伤地图	✓
多用户支持 无限制用户数,共享损伤地图,为个人用户分配端口	✓
硬件 NTP 时间戳 将硬件和数据包时钟锁定到准确的内部/外部时钟	✓

√标准配置 9

1+ 1> +m16	产品参数
技术规格	所有接口: 1G, 10G, 25G, 50G, 100G
过滤(UDP、TCP、数据包个数)	
最大过滤器 — 以任何方式连接多个过滤器以创建复杂的过滤规则	没有数量限制
IP 源/目标地址过滤(损伤特定流量)	√
TCP — 高级: 源和目标端口过滤(包括范围) TCP 数据包长度过滤	✓
UDP — 高级: 源和目标端口过滤 (包括范围) UDP 数据包长度过滤	✓
MAC 地址 — 源/目的,单个或范围	✓
以太载荷	✓
数据包计数 — 通过/不通过数据包基于数据包个数或者比例划分	√
高级过滤	
通用过滤器 — 使用逻辑偏移量过滤多个位/字节值	√
IP 协议 — 有效载荷类型和值	√
MPLS — MPLS 标签、QoS 值、TTL 值	√
VLAN — VLAN ID,用户优先级	√
MPEG 视频	可选
RTP 音频/视频	可选
报告	
实时监控 — 带宽监控、每秒数据包、 数据包间隔,导出到 CSV 最大值/平均值等	✓
Wireshark 集成(最多 200 个协议) 允许实时流量捕获和根本原因分析;重播损伤的第三方流量流, 记录流量并在以后回放	✓

√ 标准配置 10

SNE 配置

SNE 接口卡有4个槽位。以下是可选接口:

1G	1GRJ*	1GbE卡, 2或 4个1GbE电口(RJ45)
10G	10G*	10GbE卡, 2或4个¹ 10GbE/1GbE光口(SFP+)
25G	25G	25GbE卡, 2个 ² 25G/10G/1G光口(SFP28)
	25G	25GbE卡, 2个 ² 25G光口(QSFP28)
50G	50G	50GbE卡, 2 个50/25G光口(QSFP28)
100G	100G	100GbE卡, 2个100/50/25G光口(QSFP28)

注:标有*的卡可启用2或4个端口进行配置

STD* (10GbE/1GbE 标准规格参数)

- ・ 所有端口128字节流量线速 (最多8个10GbE端口)
- ・ 任何4个10GbE端口或所有1GbE端口64字节流量线速

HPC* (10GbE/1GbE 高端口数性能)

- ・ 所有端口的iMix流量线速(最多16个10GbE端口)
- ・ 任何2个10GbE端口或所有1GbE端口64字节流量的线速

注意:

・目前不允许包括混合4端口10G HPC模块和2端口10G STD模块。

¹有两种10G卡。2端口STD卡和4端口HPC卡。更多信息,请参考下方STD和HPC规格参数。

²有两种25G卡。2端口SFP28卡和2端口QSFP28卡。更多信息,请参考下方25G SFP28参数和25G QSFP28规格参数。